Re-linearization and elimination of variables in Boolean equation systems

Bjørn Møller Greve^{1,2} Håvard Raddum² Øyvind Ytrehus²

¹Norwegian Defence Research Establishment

 2 Simula@UiR

4 September, 2017

- - $f_1(x_1, \ldots, x_n) = 0$ $x_1'(x_2,...,x_n) = 0$. . . −→ $f_m(x_1, \ldots, x_n) = 0$ $S'_{m}(x_{2},...,x_{n})=0$
- Eliminate x_1 s.th (a_1, \ldots, a_n) solution in left system \Longrightarrow (a_2, \ldots, a_n) is solution in right system.

-
-
-

Elimination of variables from Boolean functions

- Consider the Boolean ring $B[1, n] = \mathbb{F}_2[x_1, \ldots, x_n]/(x_i^2 + x_i | i = 1, \ldots, n)$
	-
-

-
-
-

Elimination of variables from Boolean functions

- Consider the Boolean ring $B[1, n] = \mathbb{F}_2[x_1, \ldots, x_n]/(x_i^2 + x_i | i = 1, \ldots, n)$
	- $f_1(x_1, \ldots, x_n) = 0$ $y_1'(x_2,...,x_n) = 0$. . \cdot \longrightarrow . . :
 $m'_{m}(x_{2},...,x_{n})=0$ $f_m(x_1, \ldots, x_n) = 0$
-

-
-
-

Elimination of variables from Boolean functions

- Consider the Boolean ring $B[1, n] = \mathbb{F}_2[x_1, \ldots, x_n]/(x_i^2 + x_i | i = 1, \ldots, n)$
	- $f_1(x_1, \ldots, x_n) = 0$ $y_1'(x_2,...,x_n) = 0$. . \cdot \longrightarrow . . :
 $m'_{m}(x_{2},...,x_{n})=0$ $f_m(x_1, \ldots, x_n) = 0$
- Eliminate x_1 s.th (a_1, \ldots, a_n) solution in left system \Longrightarrow (a_2, \ldots, a_n) is solution in right system.

Applications to ciphers

-
-
-

Elimination of variables from Boolean functions

- Consider the Boolean ring $B[1, n] = \mathbb{F}_2[x_1, \ldots, x_n]/(x_i^2 + x_i | i = 1, \ldots, n)$
	- $f_1(x_1, \ldots, x_n) = 0$ $y_1'(x_2,...,x_n) = 0$. . \cdot \longrightarrow . . :
 $m'_{m}(x_{2},...,x_{n})=0$ $f_m(x_1, \ldots, x_n) = 0$
- Eliminate x_1 s.th (a_1, \ldots, a_n) solution in left system \Longrightarrow (a_2, \ldots, a_n) is solution in right system.

Applications to ciphers

- Describe cipher as quadratic Boolean equation system.
-
-

Elimination of variables from Boolean functions

- Consider the Boolean ring $B[1, n] = \mathbb{F}_2[x_1, \ldots, x_n]/(x_i^2 + x_i | i = 1, \ldots, n)$
	- $f_1(x_1, \ldots, x_n) = 0$ $y_1'(x_2,...,x_n) = 0$. . \cdot \longrightarrow . . :
 $m'_{m}(x_{2},...,x_{n})=0$ $f_m(x_1, \ldots, x_n) = 0$
- Eliminate x_1 s.th (a_1, \ldots, a_n) solution in left system \Longrightarrow (a_2, \ldots, a_n) is solution in right system.

Applications to ciphers

- Describe cipher as quadratic Boolean equation system.
- Variables: Secret key $K +$ auxiliary variables (To keep equations simple)
-

Elimination of variables from Boolean functions

- Consider the Boolean ring $B[1, n] = \mathbb{F}_2[x_1, \ldots, x_n]/(x_i^2 + x_i | i = 1, \ldots, n)$
	- $f_1(x_1, \ldots, x_n) = 0$ $y_1'(x_2,...,x_n) = 0$. . \longrightarrow . . :
 $m'_{m}(x_{2},...,x_{n})=0$ $f_m(x_1, \ldots, x_n) = 0$
- Eliminate x_1 s.th (a_1, \ldots, a_n) solution in left system \Longrightarrow (a_2, \ldots, a_n) is solution in right system.

Applications to ciphers

- Describe cipher as quadratic Boolean equation system.
- Variables: Secret key $K +$ auxiliary variables (To keep equations simple)
- Is it possible to eliminate auxiliary variables and find some equations in only key variables?

-
- Brute force possible solutions of final system, lift through intermediate systems to filter out false solutions.

Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has *K* as a unique solution.

The general method:

- Save intermediate systems after each elimination.
-

Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has *K* as a unique solution.

The general method:

- Save intermediate systems after each elimination.
- Brute force possible solutions of final system, lift through intermediate systems to filter out false solutions.

Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has *K* as a unique solution.

The general method:

- Save intermediate systems after each elimination.
- Brute force possible solutions of final system, lift through intermediate systems to filter out false solutions.

The block cipher method:

The general method:

- Save intermediate systems after each elimination.
- Brute force possible solutions of final system, lift through intermediate systems to filter out false solutions.

The block cipher method:

Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has *K* as a unique solution.

The general method:

- Save intermediate systems after each elimination.
- Brute force possible solutions of final system, lift through intermediate systems to filter out false solutions.

The block cipher method:

Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has *K* as a unique solution.

Re-linearization

The general method:

- Save intermediate systems after each elimination.
- Brute force possible solutions of final system, lift through intermediate systems to filter out false solutions.

The block cipher method:

Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has *K* as a unique solution.

Re-linearization

-
- Gaussian elimination on *F* eliminating all monomials containing *x*1.

-
- In general: Extended GRFY elimination ⊃ XL elimination when restricting the degree to \leq 3.
- In general extended GRFY elimination introduces less false solutions than the naive XL method when restricting the degree to ≤ 3 .

GRFY (BFA 2017)

Elimination algorithm with degree restriction $\deg(f_i) \leq 3$.

-
- Gaussian elimination on *F* eliminating all monomials containing *x*1.

-
- In general: Extended GRFY elimination ⊃ XL elimination when restricting the degree to \leq 3.
- In general extended GRFY elimination introduces less false solutions than the naive XL method when restricting the degree to ≤ 3 .

GRFY (BFA 2017)

Elimination algorithm with degree restriction $\deg(f_i) \leq 3$.

"Naive" XL elimination

- Multiply each *fⁱ* with all monomials respecting degree restriction ⇒ New polynomial set *F*.
-

-
- In general: Extended GRFY elimination ⊃ XL elimination when restricting the degree to \leq 3.
- In general extended GRFY elimination introduces less false solutions than the naive XL method when restricting the degree to ≤ 3 .

GRFY (BFA 2017)

Elimination algorithm with degree restriction $\deg(f_i) \leq 3$.

"Naive" XL elimination

- Multiply each *fⁱ* with all monomials respecting degree restriction ⇒ New polynomial set *F*.
- Gaussian elimination on *F* eliminating all monomials containing *x*1.

-
- In general: Extended GRFY elimination ⊃ XL elimination when restricting the degree to ≤ 3 .
- In general extended GRFY elimination introduces less false solutions than the naive XL method when restricting the degree to ≤ 3 .

GRFY (BFA 2017)

Elimination algorithm with degree restriction $\deg(f_i) \leq 3$.

"Naive" XL elimination

- Multiply each *fⁱ* with all monomials respecting degree restriction ⇒ New polynomial set *F*.
- Gaussian elimination on *F* eliminating all monomials containing *x*1.

- GRFY elimination $=$ XL elimination when restricting the degree to \leq 3.
-
-

GRFY (BFA 2017)

Elimination algorithm with degree restriction $\deg(f_i) \leq 3$.

"Naive" XL elimination

- Multiply each *fⁱ* with all monomials respecting degree restriction ⇒ New polynomial set *F*.
- Gaussian elimination on *F* eliminating all monomials containing *x*1.

- GRFY elimination $=$ XL elimination when restricting the degree to \leq 3.
- In general: Extended GRFY elimination ⊃ XL elimination when restricting the degree to ≤ 3 .
-

GRFY (BFA 2017)

Elimination algorithm with degree restriction $\deg(f_i) \leq 3$.

"Naive" XL elimination

- Multiply each *fⁱ* with all monomials respecting degree restriction ⇒ New polynomial set *F*.
- Gaussian elimination on *F* eliminating all monomials containing *x*1.

- GRFY elimination $=$ XL elimination when restricting the degree to \leq 3.
- In general: Extended GRFY elimination ⊃ XL elimination when restricting the degree to ≤ 3 .
- In general extended GRFY elimination introduces less false solutions than the naive XL method when restricting the degree to ≤ 3 .

Generalizations

-
- *F ^d* ={polynomials of deg *d*}, *F ^d*−¹ ={pols. of deg *d* − 1},*. . . , F*¹ ={linear polynomials}.

-
- \bullet $L^0 = \{1\}, \ L^1 = \{x_1, \ldots, x_n\}, \ldots, L^i = \{\text{monomials of degree } i\}.$
- \bullet Bounding degree $d \to$ form any product of the form $L^iF^j = \{lf, l \in L^i, f \in F^j\}$ as long as $i + j \leq d$.
- Eliminate variables from the vectorspace $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle.$

- Allow more computational complexity when eliminating variables \rightarrow fixing the degree at a chosen parameter $d \geq 3$.
-

-
- \bullet $L^0 = \{1\}, \ L^1 = \{x_1, \ldots, x_n\}, \ldots, L^i = \{\text{monomials of degree } i\}.$
- \bullet Bounding degree $d \to$ form any product of the form $L^iF^j = \{lf, l \in L^i, f \in F^j\}$ as long as $i + j \leq d$.
- Eliminate variables from the vectorspace $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle.$

- Allow more computational complexity when eliminating variables \rightarrow fixing the degree at a chosen parameter $d \geq 3$.
- *F ^d* ={polynomials of deg *d*}, *F ^d*−¹ ={pols. of deg *d* − 1},*. . . , F*¹ ={linear polynomials}.

-
- \bullet $L^0 = \{1\}, \ L^1 = \{x_1, \ldots, x_n\}, \ldots, L^i = \{\text{monomials of degree } i\}.$
- \bullet Bounding degree $d \to$ form any product of the form $L^iF^j = \{lf, l \in L^i, f \in F^j\}$ as long as $i + j \leq d$.
- Eliminate variables from the vectorspace $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle.$

- Allow more computational complexity when eliminating variables \rightarrow fixing the degree at a chosen parameter $d \geq 3$.
- *F ^d* ={polynomials of deg *d*}, *F ^d*−¹ ={pols. of deg *d* − 1},*. . . , F*¹ ={linear polynomials}.

- Eliminate x_1, \ldots , only computing with polynomials of degree d or less.
-
-
-

- Allow more computational complexity when eliminating variables \rightarrow fixing the degree at a chosen parameter $d \geq 3$.
- *F ^d* ={polynomials of deg *d*}, *F ^d*−¹ ={pols. of deg *d* − 1},*. . . , F*¹ ={linear polynomials}.

- Eliminate x_1, \ldots , only computing with polynomials of degree d or less.
- $L^0 = \{1\}$, $L^1 = \{x_1, \ldots, x_n\}, \ldots, L^i =$ {monomials of degree i }.
-
-

- Allow more computational complexity when eliminating variables \rightarrow fixing the degree at a chosen parameter $d \geq 3$.
- *F ^d* ={polynomials of deg *d*}, *F ^d*−¹ ={pols. of deg *d* − 1},*. . . , F*¹ ={linear polynomials}.

- Eliminate x_1, \ldots , only computing with polynomials of degree d or less.
- $L^0 = \{1\}$, $L^1 = \{x_1, \ldots, x_n\}, \ldots, L^i =$ {monomials of degree i }.
- \bullet Bounding degree $d \to$ form any product of the form $L^iF^j = \{lf, l \in L^i, f \in F^j\}$ as long as $i + j \leq d$.

- Allow more computational complexity when eliminating variables \rightarrow fixing the degree at a chosen parameter $d \geq 3$.
- *F ^d* ={polynomials of deg *d*}, *F ^d*−¹ ={pols. of deg *d* − 1},*. . . , F*¹ ={linear polynomials}.

- Eliminate x_1, \ldots , only computing with polynomials of degree d or less.
- $L^0 = \{1\}$, $L^1 = \{x_1, \ldots, x_n\}, \ldots, L^i = \{$ monomials of degree $i\}$.
- \bullet Bounding degree $d \to$ form any product of the form $L^iF^j = \{lf, l \in L^i, f \in F^j\}$ as long as $i + j \leq d$.
- Eliminate variables from the vectorspace $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle.$

- \bullet For each $i=\{1\dots,d\}$, $\langle F^i\cup L^1F^{i-1}\cup\cdots\cup L^{d-2}F^2\cup L^{d-1}F^1\rangle$ may contain more polynomials of degree *< i*.
- We can try to produce a larger set of polynomials *F ⁱ*−1*,*(2)*, . . . , F*¹*,*(2) by Gaussian elimination with respect to degree. I.e $F^{i-1} \subseteq F^{i-1,(2)}, \ldots, F^1 \subseteq F^{1,(2)}.$

- \bullet Enable us to eliminate particular monomials containing x_1 from each F^i using the lower degree sets F^{i-1},\ldots,F^2,F^1 as basis.
- The effect of normalization is that there is a rather large set of monomials containing x_1 that can not appear in each set F^i at the end.

A. "Naive" XL elimination Monomials containing *x*¹ are largest For each $i = \{1, \ldots, d\}$, Gaussian elimination on $F^i \cup L^1 F^{i-1} \cup \ldots \cup L^{i-2} F^2 \cup L^{i-1} F^1$ to eliminate all monomials containing $x_1.$

- \bullet For each $i=\{1\dots,d\}$, $\langle F^i\cup L^1F^{i-1}\cup\cdots\cup L^{d-2}F^2\cup L^{d-1}F^1\rangle$ may contain more polynomials of degree *< i*.
- We can try to produce a larger set of polynomials *F ⁱ*−1*,*(2)*, . . . , F*¹*,*(2) by Gaussian elimination with respect to degree. I.e $F^{i-1} \subseteq F^{i-1,(2)}, \ldots, F^1 \subseteq F^{1,(2)}.$

- \bullet Enable us to eliminate particular monomials containing x_1 from each F^i using the lower degree sets F^{i-1},\ldots,F^2,F^1 as basis.
- The effect of normalization is that there is a rather large set of monomials containing x_1 that can not appear in each set F^i at the end.

A. "Naive" XL elimination Monomials containing *x*¹ are largest For each $i = \{1, \ldots, d\}$, Gaussian elimination on $F^i \cup L^1 F^{i-1} \cup \ldots \cup L^{i-2} F^2 \cup L^{i-1} F^1$ to eliminate all monomials containing $x_1.$

B. Ordering the monomials with respect to degree

-
-

- \bullet Enable us to eliminate particular monomials containing x_1 from each F^i using the lower degree sets F^{i-1},\ldots,F^2,F^1 as basis.
- The effect of normalization is that there is a rather large set of monomials containing x_1 that can not appear in each set F^i at the end.

A. "Naive" XL elimination Monomials containing *x*¹ are largest For each $i = \{1, \ldots, d\}$, Gaussian elimination on $F^i \cup L^1 F^{i-1} \cup \ldots \cup L^{i-2} F^2 \cup L^{i-1} F^1$ to eliminate all monomials containing $x_1.$

- **B. Ordering the monomials with respect to degree**
	- \bullet For each $i=\{1\dots,d\}$, $\langle F^i\cup L^1F^{i-1}\cup\dots\cup L^{d-2}F^2\cup L^{d-1}F^1\rangle$ may contain more polynomials of degree *< i*.

- \bullet Enable us to eliminate particular monomials containing x_1 from each F^i using the lower degree sets F^{i-1},\ldots,F^2,F^1 as basis.
- The effect of normalization is that there is a rather large set of monomials containing x_1 that can not appear in each set F^i at the end.

A. "Naive" XL elimination Monomials containing *x*¹ are largest For each $i = \{1, \ldots, d\}$, Gaussian elimination on $F^i \cup L^1 F^{i-1} \cup \ldots \cup L^{i-2} F^2 \cup L^{i-1} F^1$ to eliminate all monomials containing $x_1.$

- **B. Ordering the monomials with respect to degree**
	- \bullet For each $i=\{1\dots,d\}$, $\langle F^i\cup L^1F^{i-1}\cup\dots\cup L^{d-2}F^2\cup L^{d-1}F^1\rangle$ may contain more polynomials of degree *< i*.
	- We can try to produce a larger set of polynomials *F ⁱ*−1*,*(2)*, . . . , F*¹*,*(2) by Gaussian elimination with respect to degree. I.e $F^{i-1} \subseteq F^{i-1,(2)}, \ldots, F^1 \subseteq F^{1,(2)}.$

- \bullet Enable us to eliminate particular monomials containing x_1 from each F^i using the lower degree sets F^{i-1},\ldots,F^2,F^1 as basis.
- The effect of normalization is that there is a rather large set of monomials containing x_1 that can not appear in each set F^i at the end.

A. "Naive" XL elimination Monomials containing *x*¹ are largest For each $i = \{1, \ldots, d\}$, Gaussian elimination on $F^i \cup L^1 F^{i-1} \cup \ldots \cup L^{i-2} F^2 \cup L^{i-1} F^1$ to eliminate all monomials containing $x_1.$

- **B. Ordering the monomials with respect to degree**
	- \bullet For each $i=\{1\dots,d\}$, $\langle F^i\cup L^1F^{i-1}\cup\dots\cup L^{d-2}F^2\cup L^{d-1}F^1\rangle$ may contain more polynomials of degree *< i*.
	- We can try to produce a larger set of polynomials *F ⁱ*−1*,*(2)*, . . . , F*¹*,*(2) by Gaussian elimination with respect to degree. I.e $F^{i-1} \subseteq F^{i-1,(2)}, \ldots, F^1 \subseteq F^{1,(2)}.$

Normal forms

-
-

A. "Naive" XL elimination Monomials containing *x*¹ are largest For each $i = \{1, \ldots, d\}$, Gaussian elimination on $F^i \cup L^1 F^{i-1} \cup \ldots \cup L^{i-2} F^2 \cup L^{i-1} F^1$ to eliminate all monomials containing $x_1.$

- **B. Ordering the monomials with respect to degree**
	- \bullet For each $i=\{1\dots,d\}$, $\langle F^i\cup L^1F^{i-1}\cup\dots\cup L^{d-2}F^2\cup L^{d-1}F^1\rangle$ may contain more polynomials of degree *< i*.
	- We can try to produce a larger set of polynomials *F ⁱ*−1*,*(2)*, . . . , F*¹*,*(2) by Gaussian elimination with respect to degree. I.e $F^{i-1} \subseteq F^{i-1,(2)}, \ldots, F^1 \subseteq F^{1,(2)}.$

Normal forms

- \bullet Enable us to eliminate particular monomials containing x_1 from each F^i using the lower degree sets F^{i-1},\ldots,F^2,F^1 as basis.
-

A. "Naive" XL elimination Monomials containing *x*¹ are largest For each $i = \{1, \ldots, d\}$, Gaussian elimination on $F^i \cup L^1 F^{i-1} \cup \ldots \cup L^{i-2} F^2 \cup L^{i-1} F^1$ to eliminate all monomials containing $x_1.$

- **B. Ordering the monomials with respect to degree**
	- \bullet For each $i=\{1\dots,d\}$, $\langle F^i\cup L^1F^{i-1}\cup\dots\cup L^{d-2}F^2\cup L^{d-1}F^1\rangle$ may contain more polynomials of degree *< i*.
	- We can try to produce a larger set of polynomials *F ⁱ*−1*,*(2)*, . . . , F*¹*,*(2) by Gaussian elimination with respect to degree. I.e $F^{i-1} \subseteq F^{i-1,(2)}, \ldots, F^1 \subseteq F^{1,(2)}.$

Normal forms

- \bullet Enable us to eliminate particular monomials containing x_1 from each F^i using the lower degree sets F^{i-1},\ldots,F^2,F^1 as basis.
- The effect of normalization is that there is a rather large set of monomials containing x_1 that can not appear in each set F^i at the end.

-
- We can form the resultant with respect to *x*¹

$$
Res(f_i, f_j) = a_i b_j + a_j b_i = a_i f_j + a_j f_i \in B[2, n].
$$

• The set of all resultants: $\text{Res}_2^{y+z} = \{\text{Res}(f_i, f_j)\}.$

-
- We can form the coefficient constraint with respect to *x*¹

$$
(a+1)f = x_1a(a+1) + b(a+1) = b(a+1) \in B[2,n].
$$

Resultants

- Given $f_i = a_i x_1 + b_i \in F^z$ and $f_j = a_j x_1 + b_j \in F^y$ satisfying $z + y \leq d + 1$, where $\deg a_i \leq z - 1$ and $\deg b_i \leq z$ (resp *j*)
-

$$
Res(f_i, f_j) = a_i b_j + a_j b_i = a_i f_j + a_j f_i \in B[2, n]
$$

-
- We can form the coefficient constraint with respect to *x*¹

$$
(a+1)f = x_1a(a+1) + b(a+1) = b(a+1) \in B[2,n].
$$

Resultants

- Given $f_i = a_i x_1 + b_i \in F^z$ and $f_j = a_j x_1 + b_j \in F^y$ satisfying $z + y \leq d + 1$, where $\deg a_i \leq z - 1$ and $\deg b_i \leq z$ (resp *i*)
- We can form the resultant with respect to *x*¹

$$
Res(f_i, f_j) = a_i b_j + a_j b_i = a_i f_j + a_j f_i \in B[2, n].
$$

-
- We can form the coefficient constraint with respect to *x*¹

$$
(a+1)f = x_1a(a+1) + b(a+1) = b(a+1) \in B[2,n].
$$

Resultants

- Given $f_i = a_i x_1 + b_i \in F^z$ and $f_j = a_j x_1 + b_j \in F^y$ satisfying $z + y \leq d + 1$, where $\deg a_i \leq z - 1$ and $\deg b_i \leq z$ (resp *i*)
- We can form the resultant with respect to *x*¹

$$
Res(f_i, f_j) = a_i b_j + a_j b_i = a_i f_j + a_j f_i \in B[2, n].
$$

• The set of all resultants: $\text{Res}_2^{y+z} = \{Res(f_i, f_j)\}.$

-
- We can form the coefficient constraint with respect to *x*¹

$$
(a+1)f = x_1a(a+1) + b(a+1) = b(a+1) \in B[2,n].
$$

Resultants

- Given $f_i = a_i x_1 + b_i \in F^z$ and $f_j = a_j x_1 + b_j \in F^y$ satisfying $z + y \leq d + 1$, where $\deg a_i \leq z - 1$ and $\deg b_i \leq z$ (resp *i*)
- We can form the resultant with respect to *x*¹

$$
Res(f_i, f_j) = a_i b_j + a_j b_i = a_i f_j + a_j f_i \in B[2, n].
$$

• The set of all resultants: $\text{Res}_2^{y+z} = \{Res(f_i, f_j)\}.$

Coefficient constraints (GRFY 2017)

- Given $f = x_1a + b \in F^i$ satisfying $2i \leq d+1$, where $\deg a \leq i-1$ and $\deg b \leq i$.
-

$$
(a+1)f = x_1a(a+1) + b(a+1) = b(a+1) \in B[2,n].
$$

Resultants

- Given $f_i = a_i x_1 + b_i \in F^z$ and $f_j = a_j x_1 + b_j \in F^y$ satisfying $z + y \leq d + 1$, where $\deg a_i \leq z - 1$ and $\deg b_i \leq z$ (resp *i*)
- We can form the resultant with respect to *x*¹

$$
Res(f_i, f_j) = a_i b_j + a_j b_i = a_i f_j + a_j f_i \in B[2, n].
$$

• The set of all resultants: $\text{Res}_2^{y+z} = \{Res(f_i, f_j)\}.$

Coefficient constraints (GRFY 2017)

- Given $f = x_1a + b \in F^i$ satisfying $2i \leq d+1$, where $\deg a \leq i-1$ and $\deg b \leq i$.
- We can form the coefficient constraint with respect to *x*¹

$$
(a+1)f = x_1a(a+1) + b(a+1) = b(a+1) \in B[2,n].
$$

Resultants

- Given $f_i = a_i x_1 + b_i \in F^z$ and $f_j = a_j x_1 + b_j \in F^y$ satisfying $z + y \leq d + 1$, where $\deg a_i \leq z - 1$ and $\deg b_i \leq z$ (resp *i*)
- We can form the resultant with respect to *x*¹

$$
Res(f_i, f_j) = a_i b_j + a_j b_i = a_i f_j + a_j f_i \in B[2, n].
$$

• The set of all resultants: $\text{Res}_2^{y+z} = \{Res(f_i, f_j)\}.$

Coefficient constraints (GRFY 2017)

- Given $f = x_1a + b \in F^i$ satisfying $2i \leq d+1$, where $\deg a \leq i-1$ and $\deg b \leq i$.
- We can form the coefficient constraint with respect to *x*¹

$$
(a+1)f = x_1a(a+1) + b(a+1) = b(a+1) \in B[2,n].
$$

 \bullet The set of all coefficient constraints: $\mathsf{Co}_2^j = \{b_i(a_i+1)\}.$

-
- 2. If we extend the above construction to include **B.**, we in general have ${Resultants + coefficient constraints + Normalization +}$ $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle \cap B[2, n].$

Theorem 1

1. {Resultants + coefficient constraints + Normalization $++$ } = $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle \cap B[2, n].$

- 1. {Resultants + coefficient constraints + Normalization $++$ } = $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle \cap B[2, n].$
- 2. If we extend the above construction to include **B.**, we in general have ${Resultants + coefficient constraints + Normalization +}$ $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle \cap B[2, n].$

Theorem 1

- 1. {Resultants + coefficient constraints + Normalization $++$ } = $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle \cap B[2, n].$
- 2. If we extend the above construction to include **B.**, we in general have ${Resultants + coefficient constraints + Normalization +}$ \supset $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle \cap B[2, n].$

In general we expect that we can eliminate variables with lower (monomial) complexity with generalized GRFY framework \rightarrow avoids multiplying with all variables.

Theorem 1

- 1. {Resultants + coefficient constraints + Normalization $++$ } = $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle \cap B[2, n].$
- 2. If we extend the above construction to include **B.**, we in general have ${Resultants + coefficient constraints + Normalization +}$ $\langle F^d \cup L^1 F^{d-1} \cup L^2 F^{d-2} \cup \cdots \cup L^{d-2} F^2 \cup L^{d-1} F^1 \rangle \cap B[2, n].$

In general we expect that we can eliminate variables with lower (monomial) complexity with generalized GRFY framework \rightarrow avoids multiplying with all variables.

In general we expect that generalized GRFY elimination introduces less false solutions than the XL method when restricting the degree $\leq d$.

Random system, 8 equations in variables x_0, \ldots, x_7 , 1 unique solution

1+v1*v0+v1+v2+v2*v0+v2*v1+v2*v2+v2+v4*v0+v4*v2+v4+v5*v1+v5*v4+v7*v0+v7*v2+v7*v3+v7*v5

1±vn±v1±v2*vn±v2*v1±v2*vn±v2*vn±v2*vn±vd*vn±vd*v2±v5*vn±v5*v2±v5*v2±v5*vd±v5±v5*vn±v6*v2±v6*v5±v7*v1±v7*v2±v7*v2±v7*v4±v7*v5±v7*v6

 $x0+x2*x1+x2+x3*x0+x3*x1+x3*x2+x3+x4*x0+x4*x2+x4*x3+x4+x6*x0+x6*x3+x6*x4+x7*x0+x7*x3+x7$

 $1+x1+x2+x1+x2+x3+x1+x4+x2+x4+x5+x0+x5+x1+x5+x2+x5+x6+x1+x6+x2+x6+x3+x6+x5+x6+x7+x3+x7+x6$

 $x^2+x^3*x^2+x^4*x^1+x^4*x^3+x^4+x^5*x^2+x^5*x^3+x^6*x^1+x^6*x^2+x^6*x^3+x^6*x^4+x^6*x^5+x^6+x^7*x^0+x^7*x^1+x^7$

 $1+x2*x1+x2+x3*x2+x4*x1+x4*x2+x4*x3+x5*x4+x5+x6*x2+x6*x3+x7*x5+x7$

h+x0+x3*x2+x3+x4*x2+x5*x1+x5*x4+x5+x6*x2+x6*x3+x6*x5+x7*x4+x7*x6+x7

Limiting degree to max 3, GRFY elimination of x_0, x_1

** Restricting degree to max. 3 ** After elimination of x0, got 7 polynomials: x5x6x7 + x3x6x7 + x2x6x7 + x4x5x7 + x3x4x7 + x2x4x7 + x1x5x6 + x3x4x6 + x3x4x6 + x3x4x5 + x1x4x5 + x2x3x5 + x1x3x5 + x1x3x5 + x1x2x5 + x1x7 + x5x6 + x3x6 + x3x5 + x4x5 + x3x5 + x3x6 + x4x5 + x3x5 + x3x4 + x2x $3 + x1x2 + x7 + x6 + x4 + x2 + x1$ x4x6x7 + x1x6x7 + x1x4x7 + x4x5x6 + x2x4x6 + x2x3x6 + x1x3x6 + x1x3x6 + x1x4x5 + x1x2x4 + x1x2x4 + x1x2x3 + x6x7 + x5x7 + x4x7 + x2x7 + x1x7 + x5x6 + x4x6 + x2x4 + x2x4 + x2x3 + x1x3 + x1 $x2 + x6 + x5 + x3$ x3x6x7 + x2x6x7 + x3x4x7 + x2x4x7 + x3x5x6 + x2x5x6 + x3x4x5 + x2x4x5 + x1x3x5 + x1x2x5 + x2x3x4 + x6x7 + x2x7 + x2x7 + x1x7 + x4x5 + x2x5 + x1x5 + x3x4 + x2x4 + x2x3 + x1x2 + x7 $+ x3 + x2$ x2x6x7 + x2x4x7 + x2x5x6 + x1x5x6 + x3x4x6 + x2x4x5 + x1x4x5 + x1x2x5 + x2x3x4 + x4x7 + x3x7 + x2x7 + x2x6 + x1x6 + x1x4 + x2x3 + x1x3 + x5 + x4 + x3 + x2 + 1 x1x5x7 + x3x4x7 + x2x3x7 + x1x5x6 + x3x4x6 + x2x3x6 + x3x4x5 + x1x4x5 + x2x3x5 + x1x3x5 + x1x2x5 + x6x7 + x5x7 + x4x7 + x3x7 + x4x6 + x1x6 + x4x5 + x2x5 + x1x4 + x1x2 + x1 $x1x5x6 + x3x4x6 + x2x3x6 + x1x4x5 + x2x3x4 + x5x7 + x2x7 + x5x6 + x1x6 + x4x5 + x1x5 + x1x3 + x1x2 + x5 + x3 + x2 + 1$ $x5x7 + x3x6 + x2x6 + x4x5 + x3x4 + x2x4 + x1x4 + x2x3 + x1x2 + x7 + x5 + x2 + 1$ After elimination of x1, got 1 polynomials: x4x5x7 + x2x5x7 + x3x4x6 + x2x4x6 + x2x3x6 + x2x4x5 + x5x7 + x4x7 + x2x7 + x3x6 + x4x5 + x2x5 + x7 + x5 + x4 + x2 + 1

simula Quib

Limiting degree to max 4, General GRFY elimination of x_0, x_1

** Restricting degree to max. 4 **

After elimination of x0, got 14 polynomials:

x4x5x6x7 + x1x5x6x7 + x2x4x6x7 + x2x3x6x7 + x1x3x6x7 + x3x4x5x7 + x1x4x5x7 + x2x3x5x7 + x1x3x5x7 + x1x2x5x7 + x1x2x5x7 + x1x4x5x7 + x3x4x5x6 + x2x3x5x6 + x2x3x5x6 + x2x3x5x6 + x2x3x5x6 + x1x2x5x6 + x1x2x3x6 + x1 x3x4x5 + x1x2x3x4 + x5x6x7 + x3x6x7 + x4x5x7 + x2x5x7 + x1x5x7 + x3x4x7 + x2x3x7 + x1x3x7 + x4x5x6 + x2x5x6 + x2x5x6 + x2x4x6 + x2x3x6 + x1x3x6 + x3x4x5 + x2x3x5 + x1x3x5 + x1x3x5 + x1x3x5 + x1x3x5 + x1x3x5 + x1x3x5 + x1x3 $5 + x2x3x4 + x1x2x3 + x2x7 + x5x6 + x3x6 + x2x5 + x7 + x5 + x3 + x2 + 1$ x3x5x6x7 + x1x5x6x7 + x2x4x6x7 + x2x3x6x7 + x3x26x7 + x3x4x5x7 + x1x2x4x7 + x1x2x4x7 + x1x2x3x7 + x2x4x5x6 + x1x4x5x6 + x1x3x4x5 + x2x3x4x5 + x1x3x4x5 + x1x2x3x5 + x1x3x4x5 + x2x3x4x5 + x1x3x4x5 + x1x3x4x5 + x3x5 x7 + x2x4x7 + x2x3x7 + x2x4x5 + x1x4x5 + x1x3x5 + x2x3x4 + x1x3x4 + x6x7 + x1x7 + x5x6 + x4x6 + x2x6 + x1x5 + x3x5 + x1x5 + x2x4 + x1x4 + x1x4 + x1x3 + x7 + x5 + x3 + x1 + 1 x2x5x6x7 + x1x5x6x7 + x1x4x6x7 + x2x4x5x7 + x1x4x5x7 + x1x2x5x7 + x2x3x4x7 + x2x3x5x6 + x1x3x5x6 + x1x3x4x6 + x1x3x4x6 + x2x3x4x5 + x1x2x4x6 + x1x2x3x4 + x5x6x7 + x2x5x7 + x2x5x7 + x2x5x7 + x2x5x7 + x2x5x7 + x1x5x7 + x2x4x7 + x2x3x7 + x3x5x6 + x2x4x6 + x2x3x6 + x1x3x5 + x1x2x5 + x2x3x4 + x1x3x4 + x1x2x4 + x6x7 + x4x7 + x4x7 + x2x7 + x4x6 + x3x6 + x3x6 + x2x5 + x1x5 + x1x4 + x $7 + x6 + x5 + x3 + x2 + 1$ x1x5x6x7 + x2x3x6x7 + x1x3x6x7 + x1x3x5x7 + x1x2x3x7 + x2x3x5x6 + x1x2x5x6 + x1x3x4x6 + x1x3x4x5 + x1x2x3x4 + x2x5x7 + x2x3x7 + x1x3x7 + x1x3x7 + x1x3x6 + x1x5x6 + x1x3x6 + x1x3x4x6 + x1x3x4x6 + x1x3x4x6 + x1x3x x3x4x6x7 + x1x4x6x7 + x1x2x6x7 + x3x4x5x7 + x1x4x5x7 + x2x3x5x7 + x1x2x5x7 + x1x3x4x7 + x1x2x4x7 + x1x2x3x7 + x3x4x5x6 + x1x4x5x6 + x1x2x4x5 + x1x3x4x5 + x1x3x4x5 + x1x2x4x5 + x1x3x4x5 + x1x3x4x5 + x1 x2x3x4 + x4x6x7 + x1x6x7 + x2x5x7 + x3x4x7 + x2x4x7 + x1x4x7 + x2x3x7 + x4x5x6 + x2x4x6 + x2x3x6 + x1x3x6 + x1x2x6 + x2x4x5 + x2x4x5 + x2x3x4 + x1x2x3 + x6x7 + x5x7 + x5x6 + x2x6 + x2x6 + $x1x6 + x3x5 + x2x4 + x7 + x5 + x3 + 1$ x2x4x6x7 + x1x3x6x7 + x1x2x6x7 + x1x3x4x7 + x1x2x4x7 + x3x4x5x6 + x2x4x5x6 + x1x4x5x6 + x2x4x5x6 + x2x3x5x6 + x1x2x5x6 + x1x2x4x5 + x1x2x3x6 + x2x3x4x5 + x3x6x7 + x4x6x7 + x3x6x7 + x3x6x7 + x4x5x7 + x4x6x7 + x4x6x7 + x4x5x x1x6x7 + x4x5x7 + x3x4x7 + x2x4x7 + x1x4x7 + x1x3x7 + x1x2x7 + x4x5x6 + x2x5x6 + x1x5x6 + x2x4x6 + x2x4x6 + x1x2x6 + x2x4x5 + x1x4x5 + x2x3x5 + x1x3x5 + x1x3x4 + x2x3x4 + x2x4x5 + x2x4x5 + x1x3x4 + x1x3x4 + x1x3x4 + x1x3x4 + x1x2x4 + x6x7 + x5x7 + x4x7 + x3x7 + x2x7 + x1x7 + x5x6 + x4x6 + x3x6 + x1x6 + x4x5 + x2x5 + x1x4 + x1x3 + x1x2 + x7 + x5 + x3 + x2 + x1 + 1 x1x4x6x7 + x2x3x6x7 + x1x3x6x7 + x1x2x6x7 + x3x4x5x7 + x1x4x5x7 + x2x3x5x7 + x1x3x5x7 + x1x3x4x7 + x1x2x4x7 + x1x2x4x5x6 + x2x3x5x6 + x1x2x5x6 + x1x2x4x6 + x1x2x4x6 + x1x2x4x6 + x1x2x4x6 + x1x2x3x6 + x2x3x4x5 + x1 x3x4x5 + x1x2x3x4 + x5x6x7 + x2x6x7 + x4x5x7 + x2x5x7 + x3x4x7 + x1x3x7 + x1x2x7 + x3x5x6 + x1x5x6 + x3x4x6 + x2x4x6 + x1x3x6 + x1x3x6 + x1x3x5 + x1x2x4 + x1x2x4 + x1x2x3 + x1x2x4 + x1x2x3 + x1x2x3 + x6x7 + x3x7 + x1x6 + x4x5 + x3x5 + x3x4 + x2x4 + x2x3 + x1x2 + x4 x5x6x7 + x4x6x7 + x2x6x7 + x1x6x7 + x4x5x7 + x1x5x7 + x3x4x7 + x2x4x7 + x1x4x7 + x2x3x7 + x4x5x6 + x3x5x6 + x1x5x6 + x3x4x6 + x2x4x6 + x2x3x6 + x1x3x6 + x1x3x6 + x1x3x6 + x2x4x6 + x2x3x6 + x1x5x6 + x1x3x5 + x1x3x5 + x1x3x5 $+ x1x2x4 + x1x2x3 + x6x7 + x4x7 + x3x7 + x2x7 + x1x7 + x3x6 + x4x5 + x3x5 + x1x5 + x3x4 + x3 + x2 + 1$ x4x6x7 + x3x6x7 + x1x6x7 + x1x5x7 + x1x4x7 + x2x3x7 + x4x5x6 + x3x5x6 + x2x4x6 + x1x3x6 + x1x2x6 + x1x4x5 + x2x3x5 + x1x2x5 + x1x2x5 + x1x2x4 + x1x2x3 + x6x7 + x4x7 + x3x7 + x5x6 + $x2x6 + x1x5 + x2x3 + x1x2 + x7 + x6 + x4 + x3 + x1 + 1$ $x3x6x7 + x1x5x7 + x2x3x7 + x3x5x6 + x2x3x6 + x2x3x5 + x1x2x5 + x5x7 + x3x7 + x1x7 + x4x6 + x2x6 + x1x5 + x3x4 + x2x4 + x1x3 + x1 + x5 + x4 + x1 + 1$ x2x6x7 + x2x4x7 + x2x5x6 + x1x5x6 + x3x4x6 + x2x4x5 + x1x4x5 + x1x2x5 + x2x3x4 + x4x7 + x3x7 + x2x7 + x2x6 + x1x6 + x1x4 + x2x3 + x1x3 + x5 + x4 + x3 + x2 + 1 VIVEVI A VIVEVI A VIVEVI A VIVEVE A VIVEVE A VIVEVE A VIVEVE A VIVEVE A VIVIVE A VIVIVE A VEVI A VEVI A VEVI A VEVI A VIVE A VIVE A VIVE A VIVE A VIVI A VIVI A VI x1x5x6 + x3x4x6 + x2x3x6 + x1x4x5 + x2x3x4 + x5x7 + x2x7 + x5x6 + x1x6 + x4x5 + x1x5 + x1x3 + x1x2 + x5 + x3 + x2 + 1 $x5x7 + x3x6 + x2x6 + x4x5 + x3x4 + x2x4 + x1x4 + x2x3 + x1x2 + x7 + x5 + x2 + 1$ After elimination of x1, got 4 polynomials: x4x5x6x7 + x2x5x6x7 + x2x4x5x7 + x3x4x5x6 + x2x4x5x6 + x2x3x5x6 + x2x3x4x5 + x5x6x7 + x4x6x7 + x2x6x7 + x3x5x7 + x3x4x7 + x2x3x7 + x4x5x6 + x2x5x6 + x2x4x5 + x6x7 + x3x7 + $x2x7 + x5x6 + x4x6 + x3x6 + x4x5 + x3x5 + x2x5 + x7 + x6 + x5 + x3 + x2 + 1$ x3x5x6x7 + x3x4x5x7 + x3x4x5x6 + x5x6x7 + x4x6x7 + x2x5x7 + x3x4x7 + x3x5x6 + x2x4x6 + x3x4x5 + x2x4x5 + x2x4x5 + x2x3x4 + x5x7 + x2x7 + x4x5 + x2x5 + x3x4 + x2x3 + x7 + x6 + x5 + $-22 - 1$ x2x5x6x7 + x2x4x6x7 + x2x3x6x7 + x3x4x5x7 + x2x4x5x7 + x2x4x5x6 + x2x3x5x6 + x2x3x4x6 + x2x3x4x5 + x2x6x7 + x3x4x7 + x3x4x7 + x2x4x6 + x2x4x5 + x2x3x4 + x4x7 + $x3x7 + x2x7 + x3x5 + x3x4 + x2x4 + x2x3 + x7 + x3 + x2 + 1$ $x4x5x7 + x2x5x7 + x3x4x6 + x2x4x6 + x2x3x6 + x2x4x5 + x5x7 + x4x7 + x2x7 + x3x6 + x4x5 + x2x5 + x7 + x5 + x4 + x2 + 1$

-
-

[Re-linearization and elimination of variables in Boolean equation systems](#page-0-0) | B. Greve, H.Raddum, Ø.Ytrehus 10/12

simula@uib

Limiting degree to max 4, General GRFY elimination of x_0, x_1

** Restricting degree to max. 4 **

After alimination of v8 not 14 polynomials:

Increasing degree to max 5, General GRFY elimination of x_0, x_1

-
-

simula Quib

Limiting degree to max 4, General GRFY elimination of x_0, x_1

** Restricting degree to max. 4 **

After elimination of x0, got 14 polynomials:

Increasing degree to max 5, General GRFY elimination of x_0, x_1

- Eliminating *x*⁰ gives same 14 polynomials as over.
-

simula Quib

Limiting degree to max 4, General GRFY elimination of x_0, x_1

** Restricting degree to max. 4 **

After elimination of x0, got 14 polynomials:

Increasing degree to max 5, General GRFY elimination of x_0, x_1

- Eliminating *x*⁰ gives same 14 polynomials as over.
- Eliminating x_1 gives 16 polynomials.

-
- \bullet Number of polynomials produced of elimination: $\binom{m}{2}+m$
- Number of monomials of degree 3 : $\sum_{i=1}^{3} {n \choose i}$
- $\bullet \ \binom{m}{2} + m < \sum_{i=1}^3 (\binom{n}{i}) \to \textsf{no}$ re-linearization.

-
-
-
-

First elimination ideal, degree ≤ 3

- \bullet Number of resultants $\binom{m}{2}$, of coefficient constraints m
-
-
-

-
-
-
-

First elimination ideal, degree ≤ 3

- \bullet Number of resultants $\binom{m}{2}$, of coefficient constraints m
- \bullet Number of polynomials produced of elimination: $\binom{m}{2}+m$
-
-

-
-
-
-

First elimination ideal, degree ≤ 3

- \bullet Number of resultants $\binom{m}{2}$, of coefficient constraints m
- \bullet Number of polynomials produced of elimination: $\binom{m}{2}+m$
- Number of monomials of degree $3: \ \sum_{i=1}^3({n \choose i})$

-
-
-
-

First elimination ideal, degree ≤ 3

- \bullet Number of resultants $\binom{m}{2}$, of coefficient constraints m
- \bullet Number of polynomials produced of elimination: $\binom{m}{2}+m$
- Number of monomials of degree $3: \ \sum_{i=1}^3({n \choose i})$
- $\bullet \ \binom{m}{2} + m < \sum_{i=1}^3 (\binom{n}{i}) \to \textsf{no}$ re-linearization.

-
-
-
-

First elimination ideal, degree ≤ 3

- \bullet Number of resultants $\binom{m}{2}$, of coefficient constraints m
- \bullet Number of polynomials produced of elimination: $\binom{m}{2}+m$
- Number of monomials of degree $3: \ \sum_{i=1}^3({n \choose i})$
- $\bullet \ \binom{m}{2} + m < \sum_{i=1}^3 (\binom{n}{i}) \to \textsf{no}$ re-linearization.

- Number of resultants $\binom{\binom{m}{2}+m}{2}$, of coefficient constraints $\binom{m}{2}+m$.
-
-
-

First elimination ideal, degree ≤ 3

- \bullet Number of resultants $\binom{m}{2}$, of coefficient constraints m
- \bullet Number of polynomials produced of elimination: $\binom{m}{2}+m$
- Number of monomials of degree $3: \ \sum_{i=1}^3({n \choose i})$
- $\bullet \ \binom{m}{2} + m < \sum_{i=1}^3 (\binom{n}{i}) \to \textsf{no}$ re-linearization.

- Number of resultants $\binom{\binom{m}{2}+m}{2}$, of coefficient constraints $\binom{m}{2}+m$.
- \bullet Number of polynomials produced of elimination: $\binom{\binom{m}{2}+m}{2}+\binom{m}{2}+m.$
-

First elimination ideal, degree ≤ 3

- \bullet Number of resultants $\binom{m}{2}$, of coefficient constraints m
- \bullet Number of polynomials produced of elimination: $\binom{m}{2}+m$
- Number of monomials of degree $3: \ \sum_{i=1}^3({n \choose i})$
- $\bullet \ \binom{m}{2} + m < \sum_{i=1}^3 (\binom{n}{i}) \to \textsf{no}$ re-linearization.

- Number of resultants $\binom{\binom{m}{2}+m}{2}$, of coefficient constraints $\binom{m}{2}+m$.
- \bullet Number of polynomials produced of elimination: $\binom{\binom{m}{2}+m}{2}+\binom{m}{2}+m.$
- \bullet Number of monomials of degree $5\colon \sum_{i=1}^5({n\choose i})$

First elimination ideal, degree ≤ 3

- \bullet Number of resultants $\binom{m}{2}$, of coefficient constraints m
- \bullet Number of polynomials produced of elimination: $\binom{m}{2}+m$
- Number of monomials of degree $3: \ \sum_{i=1}^3({n \choose i})$
- $\bullet \ \binom{m}{2} + m < \sum_{i=1}^3 (\binom{n}{i}) \to \textsf{no}$ re-linearization.

- Number of resultants $\binom{\binom{m}{2}+m}{2}$, of coefficient constraints $\binom{m}{2}+m$.
- \bullet Number of polynomials produced of elimination: $\binom{\binom{m}{2}+m}{2}+\binom{m}{2}+m.$
- \bullet Number of monomials of degree $5\colon \sum_{i=1}^5({n\choose i})$

$$
\bullet\ \textstyle\binom{\binom{m}{2}+m}{2}+\binom{m}{2}+m>\sum_{i=1}^5(\binom{n}{i})?
$$

Re-linearization curve

[Re-linearization and elimination of variables in Boolean equation systems](#page-0-0) | B. Greve, H.Raddum, Ø.Ytrehus 12/12

Re-linearization curve

When $m = n$ this holds true for $1 \le n \le \approx 25$

[Re-linearization and elimination of variables in Boolean equation systems](#page-0-0) | B. Greve, H.Raddum, Ø.Ytrehus 12/12