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Introduction previous work Generalization of Previous work Elimination techniques Examples

Eliminating variables in Boolean equation systems

Elimination of variables from Boolean functions
• Consider the Boolean ring B[1, n] = F2[x1, . . . , xn]/(x2

i + xi|i = 1, . . . , n)
•

f1(x1, . . . , xn) = 0 f
′
1(x2, . . . , xn) = 0

... −→
...

fm(x1, . . . , xn) = 0 f
′
m(x2, . . . , xn) = 0

• Eliminate x1 s.th (a1, . . . , an) solution in left system =⇒ (a2, . . . , an) is solution
in right system.

Applications to ciphers
• Describe cipher as quadratic Boolean equation system.
• Variables: Secret key K + auxiliary variables (To keep equations simple)
• Is it possible to eliminate auxiliary variables and find some equations in only key

variables?
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If we are so lucky to find any (low degree) polynomials after elimination

The general method:
• Save intermediate systems after each elimination.
• Brute force possible solutions of final system, lift through intermediate systems

to filter out false solutions.

The block cipher method:
Repeating the process of variable elimination using other known plaintext/ciphertext
pairs and build up a low-degree system of equations in only user-selected key variables
that has K as a unique solution.

Re-linearization
Solve by re-linearization if we can generate more linearly independent polynomials (in
some acceptable degree) than there are monomials.
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Previous work

GRFY (BFA 2017)
Elimination algorithm with degree restriction deg(fi) ≤ 3.

”Naive” XL elimination
• Multiply each fi with all monomials respecting degree restriction ⇒ New

polynomial set F .
• Gaussian elimination on F eliminating all monomials containing x1.

Theorem
• GRFY elimination = XL elimination when restricting the degree to ≤ 3.
• In general: Extended GRFY elimination ⊃ XL elimination when restricting the

degree to ≤ 3.
• In general extended GRFY elimination introduces less false solutions than the

naive XL method when restricting the degree to ≤ 3.
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Generalizations

Main idea
• Allow more computational complexity when eliminating variables → fixing the

degree at a chosen parameter d ≥ 3.
• F d ={polynomials of deg d}, F d−1 ={pols. of deg d− 1},. . . , F 1 ={linear

polynomials}.

Objective
• Eliminate x1, . . ., only computing with polynomials of degree d or less.
• L0 = {1}, L1 = {x1, . . . , xn}, . . . , Li ={monomials of degree i}.
• Bounding degree d → form any product of the form LiF j = {lf, l ∈ Li, f ∈ F j}

as long as i + j ≤ d.
• Eliminate variables from the vectorspace
〈F d ∪ L1F d−1 ∪ L2F d−2 ∪ · · · ∪ Ld−2F 2 ∪ Ld−1F 1〉.
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The monomial orders
A. ”Naive” XL elimination Monomials containing x1 are largest
For each i = {1 . . . , d}, Gaussian elimination on
F i ∪ L1F i−1 ∪ . . . ∪ Li−2F 2 ∪ Li−1F 1 to eliminate all monomials containing x1.

B. Ordering the monomials with respect to degree
• For each i = {1 . . . , d}, 〈F i ∪ L1F i−1 ∪ · · · ∪ Ld−2F 2 ∪ Ld−1F 1〉 may contain

more polynomials of degree < i.
• We can try to produce a larger set of polynomials F i−1,(2), . . . , F 1,(2) by

Gaussian elimination with respect to degree. I.e
F i−1 ⊆ F i−1,(2), . . . , F 1 ⊆ F 1,(2).

Normal forms
• Enable us to eliminate particular monomials containing x1 from each F i using

the lower degree sets F i−1, . . . , F 2, F 1 as basis.
• The effect of normalization is that there is a rather large set of monomials

containing x1 that can not appear in each set F i at the end.
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Gaussian elimination with respect to degree. I.e
F i−1 ⊆ F i−1,(2), . . . , F 1 ⊆ F 1,(2).

Normal forms
• Enable us to eliminate particular monomials containing x1 from each F i using

the lower degree sets F i−1, . . . , F 2, F 1 as basis.
• The effect of normalization is that there is a rather large set of monomials

containing x1 that can not appear in each set F i at the end.
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Elimination tools
Resultants

• Given fi = aix1 + bi ∈ F z and fj = ajx1 + bj ∈ F y satisfying z + y ≤ d + 1,
where deg ai ≤ z − 1 and deg bi ≤ z (resp j)

• We can form the resultant with respect to x1

Res(fi, fj) = aibj + ajbi = aifj + ajfi ∈ B[2, n].

• The set of all resultants: Resy+z
2 = {Res(fi, fj)}.

Coefficient constraints (GRFY 2017)
• Given f = x1a + b ∈ F i satisfying 2i ≤ d + 1, where deg a ≤ i− 1 and deg b ≤ i.
• We can form the coefficient constraint with respect to x1

(a + 1)f = x1a(a + 1) + b(a + 1) = b(a + 1) ∈ B[2, n].

• The set of all coefficient constraints: Coj
2 = {bi(ai + 1)}.
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Extensions of GRFY elimination

Theorem 1
1. {Resultants + coefficient constraints + Normalization ++} =
〈F d ∪ L1F d−1 ∪ L2F d−2 ∪ · · · ∪ Ld−2F 2 ∪ Ld−1F 1〉 ∩B[2, n].

2. If we extend the above construction to include B., we in general have
{Resultants + coefficient constraints + Normalization ++} ⊃
〈F d ∪ L1F d−1 ∪ L2F d−2 ∪ · · · ∪ Ld−2F 2 ∪ Ld−1F 1〉 ∩B[2, n].

In general we expect that we can eliminate variables with lower (monomial)
complexity with generalized GRFY framework → avoids multiplying with all variables.

In general we expect that generalized GRFY elimination introduces less false solutions
than the XL method when restricting the degree ≤ d.
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Random system, 8 equations in variables x0, . . . , x7, 1 unique solution
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Limiting degree to max 3, GRFY elimination of x0, x1
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Limiting degree to max 4, General GRFY elimination of x0, x1

Increasing degree to max 5, General GRFY elimination of x0, x1

• Eliminating x0 gives same 14 polynomials as over.
• Eliminating x1 gives 16 polynomials.
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Re-linearization analysis of quadratic random systems with 1 unique
solution, m equations in n variables

First elimination ideal, degree ≤ 3
• Number of resultants

(
m
2

)
, of coefficient constraints m

• Number of polynomials produced of elimination:
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m
2

)
+ m
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When m = n this holds true for 1 ≤ n ≤≈ 25
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